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Microstructural Characterization of Metal Foams: An Examination 
of the Applicability of the Theoretical Models for Modeling Foams 

 
S.V. Raj 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 
Establishing the geometry of foam cells is useful in developing microstructure-based acoustic and 

structural models. Since experimental data on the geometry of the foam cells are limited, most modeling 
efforts use an idealized three-dimensional, space-filling Kelvin tetrakaidecahedron. The validity of this 
assumption is investigated in the present paper. Several FeCrAlY foams with relative densities varying 
between 3 and 15 percent and cells per mm (c.p.mm.) varying between 0.2 and 3.9 c.p.mm. were 
microstructurally evaluated. The number of edges per face for each foam specimen was counted by 
approximating the cell faces by regular polygons, where the number of cell faces measured varied 
between 207 and 745. The present observations revealed that 50 to 57 percent of the cell faces were 
pentagonal while 24 to 28 percent were quadrilateral and 15 to 22 percent were hexagonal. The present 
measurements are shown to be in excellent agreement with literature data. It is demonstrated that the 
Kelvin model, as well as other proposed theoretical models, cannot accurately describe the FeCrAlY foam 
cell structure. Instead, it is suggested that the ideal foam cell geometry consists of 11 faces with three 
quadrilateral, six pentagonal faces and two hexagonal faces consistent with the 3-6-2 Matzke cell. A 
compilation of 90 years of experimental data reveals that the average number of cell faces decreases 
linearly with the increasing ratio of quadrilateral to pentagonal faces. It is concluded that the Kelvin 
model is not supported by these experimental data. 

1.0 Introduction 
Aircraft engine noise is a major environmental concern especially in regions surrounding an airport 

during takeoff and landing (Ref. 1). Significant progress has been made since the advent of the first 
commercial jet engine-powered airplanes with current ultrahigh bypass engines being much quieter than 
the first generation engines. For example, the effective perceived noise level in decibels (EPNdB) relative 
to the International Civil Aviation Organization’s (ICAO) Chapter 3 certification standards decreased 
from about +5 EPNdB for aircraft engines developed in the 1960s to –5 EPNdB for modern engines 
(Refs. 2 and 3). Despite this large improvement in engine design, there is still a great desire among policy 
makers and designers to reduce noise much below current levels. For example, the National Aeronautics 
and Space Administration (NASA) has set ambitious goals to further reduce aircraft noise by –52 db with 
respect to the newly adapted ICAO’s Chapter 4 certification standards by the year 2020 under its 
Subsonic Fixed Wing (SFW) project (Ref. 4). It is expected that these noise reduction goals will be 
achieved through a combination of design changes and development of suitable materials (Refs. 3 and 4).  

Polymeric foams have been historically used for sound absorption in several applications (Ref. 5). 
More recently, metal foams are being investigated for their flow resistance (Refs. 6 and 7) and sound 
absorption properties (Refs. 8, 9, and 10). Metal foams have been proposed for use in jet engines as 
acoustic treatment over rotors (Ref. 11), fan blades (Ref. 12) and other applications (Ref. 13). The 
acoustic and other properties of foams are dependent on their relative density, ρ*/ρs, where ρ* and ρs are 
the densities of the foam and the solid material, respectively, and microstructure (Ref. 5). Simple 
formulae exist for correlating relative density and some elements of the microstructure, such as, ligament 
length and thickness (Refs. 5, 6, 7, 8, 9, and 10). However, due to difficulties in controlling process 
variables, the microstructures of the foams and their properties can vary by large amounts. Although 
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commercially manufactured foams are specified by pores per inch (p.p.i.) and their relative densities, it is 
noted that the reported values of p.p.i. are not necessarily identical from one manufacturer to another 
(Ref. 14). For example, some vendors identify the p.p.i. of their products with that of the precursor 
polyurethane foam rather than the finished product without accounting for metal shrinkage during the 
manufacturing process.  

In the case of metal foams used as acoustic liners in aircraft engines, it is important to qualitatively 
and quantitatively understand the role their microstructures play in affecting their acoustic and 
mechanical properties. Since the complex three-dimensional microstructures of the foams help to 
dissipate the sound energy, it is evident that a quantitative analysis of the foam microstructures would 
enable important correlations to be determined between the microstructural features and the gas pressure 
flow resistance as well as the sound absorption coefficients. These correlations are essential for 
developing microstructure-based models for designing acoustic liners for aircraft engines. Particularly, 
establishing the three-dimensional topology of the cell microstructures of foams is important effectively 
to model fluid flow through them and to understand their mechanical properties.  

Modeling activities on foam cell structures fall into two broad categories: (a) idealized topological 
models based on minimizing the ratio of the surface free energy to volume free energy that can fill three-
dimensional (3–D) space; and (b) engineering models based on the actual reconstruction of the 3–D foam 
microstructures. Among the several possible idealized topological representations of the foam 
microstructures (Ref. 5), the three-dimensional, space-filling Kelvin tetrakaidecahedron (Refs. 5, 15, and 
16) is often favored for modeling the foam cellular network. This cell has 14 faces consisting of six 
squares and eight hexagonal faces. In other words, about 43 percent of the faces are squares, zero percent 
faces are pentagonal and 57 percent of the faces are hexagonal. It is worth noting that other topological 
models have been proposed, where pentagonal faces are incorporated in the cell geometry (Refs. 17 and 
18). The Kelvin model assumes that all cells are all of the same size and volume so that the problem 
becomes one of determining the cell shape that can pack 3–D space resulting in a system with the lowest 
free energy (Ref. 15). In reality, cells deviate from these ideal conditions, where they may be distorted 
and their sizes and shapes non-uniform. Alternatively, recent computational models use actual 3–D foam 
microstructures as an input to the model. However, these models require the availability of high-powered 
computational capabilities to handle the large megabytes of input data representing the foam 
microstructures. The input data for these models are expensive to generate, and the models tend to be 
rather complex. Since foam microstructures are complex, it is necessary to develop both the relatively 
simple and elegant topological mathematical models, as well as, the complex, but realistic, computational 
engineering models in order to completely understand the microstructure-property relationships of foams.  

Several investigators have tried to evaluate the 3–D shape of fat cells (Ref. 19), soap bubbles (Refs. 
20 and 21), grains (Refs. 22, 23, 24, 25, 26, 27, 28, and 29) and foam cells (Refs. 30, 31, 32, and 33). 
The measurement techniques used in these investigations include conventional microstructural image 
analysis, serial section metallography, optical and x-ray micro-computerized tomography (µCT), 
magnetic resonance imaging (MRI), ultrasonic imaging and laser confocal microscopy (Refs. 14 and 34). 
Most of these procedures have advantages and disadvantages. The well-established quantitative 
metallography techniques (Refs. 23, 24, 25, 26, 27, 28, 29, 34, and 35) are relatively simple, inexpensive, 
and provide high resolution images which enable the acquisition of a large amount of statistically relevant 
data with relative ease. However, these procedures are destructive in nature and the 3–D information of 
the microstructure can only be inferred from the two-dimensional (2–D) sections using well-developed 
mathematical and stereological methods (Refs. 24, 25, 34, and 35). The advent of powerful computers and 
the availability of specialized software with capabilities to reconstruct 3–D images by “stitching” several 
closely-spaced 2–D images has enabled the recent development of several techniques, such as optical 
tomography (Ref. 21), MRI (Ref. 30) and µCT (Ref. 32), for accurately reproducing the complex 3–D 
foam microstructures. The primary advantages of these methods is that the resulting 3–D images along 
with quantitative information on the foam microstructures can provide a realistic image of the 3–D spatial 
distribution of the cells. In recent years, µCT is increasingly used to characterize foam microstructures 
due to the advantages of using 3–D reconstructed images as input to the computational engineering 
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models. Despite its relative popularity, it is time consuming, expensive and possesses a lower image 
resolution than conventional metallographic methods (Ref. 31). Typically, only a few foam cells are 
sampled so that the statistical sampling size is limited.  

The objectives of this investigation were to characterize the microstructures of PORVAIR1 metal 
foams. Quantitative information on ligament (or struts) dimensions, cell face dimensions, area fractions of 
open and closed faces, geometric shapes of the cell faces and distribution of ligament porosity were 
determined. Specifically, the present paper reports statistical data on the geometrical features of the cells 
faces to determine the validity of the Kelvin (Ref. 15) and other theoretical space-filling models (Refs. 16, 
17, and 18) in a comprehensive manner. Other quantitative details of the foam microstructure are reported 
elsewhere (Ref. 36).  

2.0 Experimental Procedures 
Several FeCrAlY foam panels approximately 210 x 210 mm2 in cross-sectional area and varying in 

thicknesses between 3.2 and 25.4 mm were procured from PORVAIR Fuel Cells Technology, Inc., 
Hendersonville, North Carolina. The foam panels were manufactured from precursor polyurethane foams 
dipped in metal powder slurries followed by sintering of the powder and burning off the polymer foams. 
The c.p.mm. varied between 0.2 (5 p.p.i.) and 3.9 (100 p.p.i.), whereas ρ*/ρS varied between 3 and 
15 percent. Square specimens ~ 25.4 x 25.4 mm in cross-sectional dimensions or 50 mm in diameter  
were wire electro-discharge machined from these panels for metallographic analyses. On close 
examination, it was observed that the microstructures of these foams are extremely complicated and 
difficult to characterize. The foam microstructures consisted of interconnected cells randomly stacked in a 
three-dimensional array with the cell boundaries moving in and out of the field of view.  

Preliminary attempts to study the shapes of the foam cells using either µCT with resolutions varying 
between 20 and 100 µm or an automated serial sectioning2 of a FeCrAlY foam specimen and the 
subsequent 3–D reconstruction of the 2–D sectioned images proved to be unsatisfactory since the cell 
outline could not be clearly defined in the images. Instead, macrophotographs were obtained of the as-
received foam specimens (Fig. 1(a)). This technique allowed a 3–D visualization of the foam 
microstructure with several adjacent faces of a cell being clearly demarcated (Fig. 1(b)). It is noted that 
Figure 1(a) is similar to the 3–D reconstructed image of polymer foams (Ref. 31) except that the present 
imaging technique is faster and cheaper. Quantitative metallographic measurements were conducted on 6 
to 7 randomly selected areas for each foam specimen and a large number of faces were measured to 
ensure that the measurements were representative and to minimize measurement errors. The number of 
edges per face was counted by assuming that the faces could be approximated by regular polygons with 
the number of cell faces measured varying between 207 for foams 0.2 c.p.mm. to 745 for 3.9 c.p.mm. 
This assumption was not always valid since some faces were either circular or elliptical rather than 
polygonal and the edges were often curved. In some instances, the edges of a face curved out of the plane 
of view. In addition, two adjacent edges did not meet always at a relatively sharp point but had a 
significant curvature, while adjacent faces met at triple surfaces rather than triple points in many 
instances. These issues complicated the measurements and they are likely to add to the errors in 
measurements. Nevertheless, by measuring a large number of faces, it was felt that the errors in 
measurement would be minimized. It is noted that a similar method was used by Montminy et al. 
(Ref. 31) to analyze 3–D µCT images.  

 
 

                                                      
1PORVAIR is the trademark of PORVAIR Fuel Cells Technology, Hendersonville, North Carolina. 
2The automated sectioning of the FeCrAlY foams and the 3–D image reconstruction was conducted by UES, Inc., 
Dayton, Ohio. 
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Figure 1.—(a) Optical macrograph of a FeCrAlY foam with a nominal pore 
density of 0.2 c.p.mm. (5 p.p.i) and ρ*/ρs = 3.3 percent; (b) polygonal 
representations of the faces, 1, 2, 3 and 4 enclosed by the broken circle 
belong to the same cell. 

3.0 Results and Discussion 
Figures 1(a) shows an optical macrograph of a FeCrAlY foam specimen with a nominal cell density 

of 0.2 c.p.mm. (5 p.p.i.) and ρ*/ρS = 3.3 percent; Figure 1(b) shows the corresponding polygonal 
representations of the faces. The numbers identify the faces for tracking purposes. The complex nature of 
the foam microstructures is self evident in these figures. On close examination, it was observed that 
several neighboring faces were part of the same cell. For example, the faces numbered 1, 2, 3 and 4 

(a) 

(b) 
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enclosed by the broken circle represent the outer faces a single cell with some of the inner faces of the cell 
visible in the background (Fig. 1(b)). The volume fractions of the open cells decreased while that of the 
closed cells increased with increasing relative density. Since it was often difficult to clearly discern the 
boundaries of closed faces, only the shapes of the open faces were demarcated in these measurements in 
order to minimize errors in measurement. The cells were generally equiaxed irrespective of c.p.mm. and 
relative density.  

Figures 2(a) to (d) show the frequency histogram and cumulative frequency plots of the number of 
edges per face for four FeCrAlY foams. An examination of Figures 2(a) to (d)clearly establishes that 
97 percent of the faces were either four, n4, five, n5, or six, n6,-sided with over 50 percent of the faces 
being five-sided. Less than 1 percent of the faces were triangular and less than 2 percent were heptagonal 
except in the case of foams with 2.4 c.p.mm (60 p.p.i), which had about 4 percent heptagonal faces. The 
average values of the number of edges per face, N , were determined to be 4.9 ± 0.7, 5.0 ± 0.8, 4.9 ± 0.8, 
and 4.9 ± 0.8 for the FeCrAlY foams with actual values of ρ*/ρS being 3.3 percent (0.2 c.p.mm.), 
9.5 percent (2.4 c.p.mm.), 10.1 percent (3.1 c.p.mm.) and 9.3 percent (3.9 c.p.mm.), respectively. The 
errors represent 95 percent confidence levels. Significantly, these observations were not influenced by 
either the relative densities of the foams or the lineal cell densities.  

 
 
 

 
 (a) (b) 

 
 (c) (d) 

Figure 2.—Frequency histograms and cumulative frequencies showing the distributions of the number of 
edges per face for FeCrAlY foams with different values of cells per mm and relative densities. 
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Figure 3.—Comparison of the frequency histograms of the distributions 

of the number of edges per face for soap bubbles (Refs. 20 and 21), 
polyurethane foams (Refs. 30 and 31), Ni foam (Refs. 32) and a 
FeCrAlY foam with 0.2 c.p.mm. (5 p.p.i.) and ρ*/ρs = 3.3 percent. 
The solid squares and associated legends represent the theoretical 
values for the Kelvin tetrakaidechedron. 

 
Figure 3 compares the present results with similar measurements on soap bubbles (Refs. 20 and 21), 

polyurethane foams (Refs. 30 and 31) and Ni foam (Ref. 32). These literature data include measurements 
conducted on both surface and internal cells using different measurement techniques. Table 1 compares 
the percentages of four, five, and six-sided faces observed on the FeCrAlY foams with those reported for 
fat cells (Ref. 19), soap bubbles (Refs. 20, 21, and 22), β-brass grains (Ref. 22), and foams (Refs. 22, 30, 
31, and 32). It is noted that the data compiled in Table 1 were obtained by several different techniques 
ranging from simple visual observations to complex NMR and µCT 3–D scans over a 90-year period. 
Significantly, in all cases, more than 50 percent of the cell faces had a pentagonal geometry irrespective 
of the material and measuring technique used (Table 1 and Fig. 3). The present results fall well within the 
range of other observations reported in the literature.  

An examination of Figure 3 shows that the Kelvin tetrakaidecahedron model (Ref. 15), which predicts 
0 percent five-sided faces, is inconsistent with the experimental observations. The fact that the Kelvin 
model fails to be consistent with the experimental results is not surprising. This model is based on a 
mathematical conjecture that soap bubbles and foam microstructures can be ideally represented by 
dividing three-dimensional space into cells of equal volume in a manner that follows Plateau’s rules for 
mechanical equilibrium and minimization of the surface area (Ref. 37). It is noted that the Kelvin model 
requires the arrangement of tetrakaidecahedron cells to be topologically ordered and spatially periodic to 
fill space. Real foams are far from this ideal configuration since factors, such as residual stresses due to 
processing methods, topological disorder (Ref. 37), unequal cell volumes, aperiodic spatial ordering of 
the cells (Ref. 20), and thick ligaments and triple points, can influence the cell topology. Matzke (Ref. 20) 
studied 400 peripheral soap bubbles and observed that the largest number of them possessed 11-hedra 
cells with three four-sided, six five-sided and two six-sided faces (3-6-2)3 (Fig. 4). However, these soap 
bubbles only constituted 17 percent of the total number of bubble studied since 20 other shapes were 
observed. In contrast, 97 percent of the cell faces in the FeCrAlY foams were either four, five or six-

                                                      
3This nomenclature of identifying the cells was suggested by Kraynik et al. (Ref. 37]. 
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sided. Therefore, it would be interesting to determine the number of faces for the ideal cell representing 
the microstructures of the FeCrAlY foams.  

 
TABLE 1.—COMPARISON OF THE PERCENTAGES OF FOUR, FIVE AND SIX-SIDED FACES OBSERVED IN  
FeCrAlY FOAMS WITH OBSERVATIONS ON FAT CELLS (REF. 19), SOAP BUBBLES (REFS. 20, 21, AND 22),  

β-BRASS GRAINS (REF. 22), AND FOAMS (REFS. 22, 30, 31, AND 32) 
Description Measurement 

technique 
Percentage of polyhedral faces, n4, n5 and n6 

Fat cells 
(Lewis (Ref. 19)) 

Optical microscopy or visual n4 = 21%; n5 = 53%; n6 = 23%  
 

Soap bubbles (Matzke (Ref. 20))  Optical microscopy Peripheral: n4 = 29%; n5 = 53%; n6 = 16% ;  
Central: n4 = 11%; n5 = 67%; n6 = 22%  

Soap bubbles (Monnereau et al. (Ref. 21)) Optical tomography Upper bubbles; n4 = 29%; n5 = 52%; n6 = 18%;  
Internal bubbles: n4 = 18%; n5 = 58%; n6 = 24% 

β-brass grains 
Soap bubbles 
Ammonium oleate foams 
Gelatin foams 
(Desch (Ref. 22)) 

Visual 
 

n4 = 20%; n5 = 44%; n6 = 28%  
n4 = 20%; n5 = 50%; n6 = 22%  
n4 = 21%; n5 = 50%; n6 = 25%  
n4 = 19-38%; n5 = 32-57%; n6 = 10-25%  

Polyurethane foams (Kose (Ref. 30)) 
(Montminy et al. (Ref. 31))  

 
NMR 
µCT 

 
n4 = 9%; n5 = 70%; n6 = 21%  
n4 = 24%; n5 = 55%; n6 = 19% 

Open cell Ni foam (Dillard et al. (Ref. 32)) µCT n4 = 18%; n5 = 57%; n6 = 22% 
FeCrAlY foams  
(Present investigation) 

Optical microscopy n4 = 25%; n5 = 57%; n6 = 15% 
(0.2 c.p.mm.; ρ*/ρs = 3.3%) 
n4 = 24%; n5 = 54%; n6 = 18% 
(2.4 c.p.mm.; ρ*/ρs = 9.5%) 
n4 = 28%; n5 = 52%; n6 = 18% 
(3.1 c.p.mm.; ρ*/ρs = 10.1%) 
n4 = 26%; n5 = 50%; n6 = 22% 
(3.9 c.p.mm.; ρ*/ρs = 9.3%) 

 

 
Figure 4.—A 3-6-2 11-hydra cell with three quadrilateral, 

six pentagonal and two hexagonal faces (Ref. 20). The 
numbers represent the number of edges enclosing the 
cell face. The blue solid lines representing the forward 
faces are identified by the blue lettering, while the red 
broken lines representing the back faces are identified 
by the red lettering.  
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Since quantitative optical metallography gives 2–D information, the 3–D topographical characteristics 
of the microstructure can be determined from well established stereology equations (Refs. 23, 24, 25, 26, 
27, 28, 29, 34, 35, 38, 39, and 40). The number of faces per cell, F, the number of edges per cell, E, and 
the number of vertices per cell, V, of the 3–D cell are related by the Euler equation (Refs. 5, 25, 34, and 
39) and they can be determined from N  using the Coxeter equations (Ref. 41)  

 [ ]N−
=

6
12F   (1a) 

 [ ]N
N
−

=
6
6E   (1b) 

 [ ]N
N
−

=
6
4V   (1c) 

Table 2 shows the calculated values of F, E, V, and the corresponding experimental values of N4, N5 
and N6 for the four FeCrAlY foams.4 Using the measured values of  N , the corresponding values of F 
calculated from equation (1a) are 11.0, 11.7, 11.1 and 11.4 for foams with 0.2 (5 p.p.i.), 2.4 (60 p.p.i.), 3.1 
(80 p.p.i.) and 3.9 c.p.mm. (100 p.p.i.), respectively. Based on these results, the topological characteristics 
of the ideal PORVAIR foam cell are: F = 11, E = 27 and V = 18, which satisfy Euler’s theorem (i.e., V – 
E + F = 2) with N4 = 3, N5 = 6 and N6 = 2. These values are independent of relative density.  

 
TABLE 2.—CALCULATED VALUES OF F, E, V, N4, N5 AND N6 FOR FeCrAlY FOAMS 

Linear cell density 
(c.p.mm) 

ρ*/ρs 
(%) 

F E V N4 N5 N6 

0.2 (5 p.p.i.) 3.3 11.0 26.7 17.8 3 6 2 
2.4 (60 p.p.i.) 9.5 11.7 30.0 20.0 3 6 or 7 2 
3.1 (80 p.p.i.) 10.1 11.1 26.7 17.8 3 6 2 
3.9 (100 p.p.i.) 9.3 11.4 26.7 17.8 3 6 2 or 3 

Average 11.3 27.5 18.4 3 6 2 
 
Table 3 compares the topological features of the FeCrAlY foams with several simple cell shapes 

(Ref. 5), where C is the number of cells. The topological characteristics of the FeCrAlY foams do not 
agree with any of these simple geometries. Instead, they appear to be closer to the topological structure of 
clathrates although more detailed topological modeling needs to be conducted to establish this possibility 
(Refs. 42 and 43). As noted above, Matzke (Ref. 20) observed that most of the peripheral soap bubbles 
were eleven-hedra cells with three four-sided, six five-sided and two six-sided faces (3-6-2). Based on the 
excellent agreement between the present results and Matzke’s data on peripheral soap bubbles (Ref. 20) 
(Fig. 3) taken together with the fact that the total number of faces for the FeCrAlY foams was determined 
to be 11 (Table 2), it is reasonable to suggest that the 11-hedra 3-6-2 cell is the most representative of the 
FeCrAlY foam cellular structure.  

Table 4 shows the predicted (Refs. 15, 16, 17, and 18) and the experimental (Refs. 20, 21, and 30) 
percentage distributions of polyhedral faces and the average number of faces per cell, Faverage. As noted 
earlier, the data were obtained by different methods on several materials over a 90-year period. The 
average value of F = 11.3 determined for the FeCrAlY foam cells (Table 2) is in very good agreement 
with the experimental observations on the peripheral (Ref. 20) or upper (Ref. 21) soap bubbles and gelatin 
foams (Ref. 22) for which the average number of faces is about 11.  

                                                      
4In this paper, ni represents the percentage of faces with i edges, whereas Ni is number of such faces enclosing the 
cell. 
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TABLE 3.—COMPARISON OF THE GEOMETRIC PROPERTIES OF FeCrAlY  
FOAM CELLS WITH THOSE FOR SIMPLE POLYHEDRA (REF. 5) 

Cell shape Number of face shapes F  E V C Remarks 
3 4 5 6 

Tetrahedron 4 -- -- -- 4 6 4 1 Regular Platonic solid 
Triangular prism 2 3 -- -- 5 9 6 1 Packs to fill space 
Square Prism -- 6 -- -- 6 12 8 1 Packs to fill space 
Hexagonal Prism -- 6 -- 2 8 18 12 1 Packs to fill space 
Octahedron 8 -- -- -- 8 12 6 1 Regular Platonic solid 
Rhombic Dodecahedron -- 12 -- -- 12 24 14 1 Packs to fill space 
Pentagonal Dodecahedron -- -- 12 -- 12 30 20 1 Regular Platonic solid 
Tetrakaidecahedron -- 6 -- 8 14 36 24 1 Packs to fill space 
Icosahedron 20 -- -- -- 20 30 12 1 Regular Platonic solid 
3-6-2 cell -- 3 6 2 11 27 18 1 FeCrAlY foam 

(present investigation) 

 
TABLE 4.—COMPARISON OF THE GEOMETRIC PROPERTIES OF THE CELLS PREDICTED BY SEVERAL  

THEORETICAL MODELS (REFS. 15, 16, 17, AND 18) AND EXPERIMENTAL DATA (REFS. 20, 21, 22, 30, 31, AND 32) 
Description Percentage of polyhedral faces, n4, n5 and n6 Faverage 

Kelvin cell (Ref. 15) n4 = 43%; n5 = 0%; n6 = 57% 14 
Williams cell (Ref. 17) n4 = 14%; n5 = 57%; n6 = 29% 14 
Weaire and Phelan model (Refs. 16 and 18) n4 = 0%; n5 = 89%; n6 = 11% 13.4 
Soap bubbles (Matzke (Ref. 20))  Peripheral: n4 = 29%; n5 = 53%; n6 = 16%  

Central: n4 = 11%; n5 = 67%; n6 = 22%  
11.0 (peripheral)  
13.7 (central) 

Soap bubbles (Monnereau et al. (Ref. 21)) Upper bubbles: n4 = 29%; n5 = 52%; n6 = 18%  
Internal bubbles: n4 = 18%; n5 = 58%; n6 = 24% 

11.1 (upper bubbles)  
13.5 (internal bubbles) 

β-brass grains 
Soap bubbles 
Ammonium oleate foams 
Gelatin foams 
(Desch (Ref. 22)) 

n4 = 20%; n5 = 44%; n6 = 28%  
n4 = 20%; n5 = 50%; n6 = 22%  
n4 = 21%; n5 = 50%; n6 = 25%  
 
n4 = 19-38%; n5 = 32-57%; n6 = 10-25%  

14.5 
13.0 
13.0 
 
9.0-11.0 

Polyurethane foam (Kose (Ref. 30)) 
(Montminy et al. (Ref. 31)) 

 
n4 = 9%; n5 = 70%; n6 = 21%  
n4 = 24%; n5 = 55%; n6 = 19% 

 
13.6 
13.0 

Open cell Ni foam 
(Dillard et al. (Ref. 32)) 

n4 = 17.6%; n5 = 56.8%; n6 = 21.8% 13.0 

FeCrAlY foams (Present investigation) n4 = 24-28%; n5 = 50-57%; n6 = 15-22% 11.3 
 

 
A close examination of Table 4 reveals that the present results do not agree with the predictions of the 

three topological models (Refs. 15, 16, 17, and 18). The Kelvin cell (Ref. 15) does not possess any 
pentagonal faces, whereas the Weaire-Phelan model (Refs. 16, 18, and 30) does not have any 
quadrilateral faces, with the total number of faces being either 14 or 13.4, respectively. The Williams cell 
(Ref. 17) with 14 faces possesses 14 percent quadrilateral, 57 percent pentagonal and 29 percent 
hexagonal faces. However, this model also does not agree with the present observations on the FeCrAlY 
foams. This difference between the experimental results and the theoretical predictions is to be expected 
since theoretical efforts mainly consider the surface and volume free energy contributions to the total free 
energy (Ref. 37). As indicated earlier, other factors can influence the final cell topology of real foams. For 
example, the effects of residual stresses developed in the foam panels during processing have not included 
in these theoretical derivations. Qualitatively, one can modify the Gibbs free energy equation as follows: 

 ∆G = (∆gv + ∆ge) ⋅ VC + ∆gs ⋅ SC (2) 

where, ∆G, ∆gv, ∆ge and ∆gs are the changes in the total, volume, residual strain and surface Gibbs free 
energies, respectively, VC is the cell volume and SC is the surface are of the cell. It is important to note 
that current theoretical models agree incorrectly assume that ∆ge = 0 for real foams.  
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Table 4 shows that Faverage varied between 9.0 and 14.5 (Refs. 20, 21, 22, and 30). On further 
examination of the data, Faverage decreases linearly with the increasing ratio, n4/n5, (Fig. 5(a))  

 Faverage = –5.1(n4/n5) + 14.3  (Rd
2 = 0.461)  (3) 

where Rd
2 is the coefficient of determination. In contrast, it is independent of n6/n5 (Fig. 5(b)). The 

regression Equation (3) is represented by the solid line in Figure 5(a); the broken horizontal line in  
Figure 5(b) represents the average value of Faverage = 12.2 for all the data. Equation (3) predicts a value of 
Faverage = 14.3 for n4 = 0, Faverage = 9.2 for n4 = n5, and Faverage = ∞ for n5 = 0. Thus, the Kelvin model, for 
which n5 = 0, is not supported by the trend in the experimental data.  
 

(a)  

(b)  
Figure 5.—Variation of the average number of cell faces against 

the ratio of (a) quadrilateral to pentagonal, and (b) hexagonal to 
pentagonal faces. The regression line through the data is 
represented by the solid line in (a). The present data on 
FeCrAlY foams are compared with literature data (Refs. 20, 21, 
22, 30, 31, and 32). 
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4.0 Summary and Conclusions 
A detailed microstructural analysis of several FeCrAlY metal foams with relative densities varying 

between 3 and 15 percent, and linear cell densities varying between 0.2 and 3.9 c.p.mm., was conducted 
to evaluate the topology of the foam cells. The shapes of cell faces were evaluated by approximating the 
faces by regular polygons. It was observed that between 24 and 28 percent of the cell faces were 
quadrilateral, 50 to 57 percent pentagonal, and 15 to 22 percent hexagonal in morphology. The present 
results are in excellent agreement with observations on soap bubbles (Refs. 20 and 21). Based on 
Matzke’s observations (Ref. 20), it is suggested that the FeCrAlY foam cells had a total of 11 faces with 
three quadrilateral, six pentagonal and two hexagonal faces. Both sets of results do not agree with the  
14-hedra Kelvin tetrakaidecahedron model (Ref. 15), which only has 43 and 57 percent quadrilateral and 
hexagonal faces, respectively. Neither do the present results agree with the Williams (Ref. 17) and 
Weaire-Phelan models (Refs. 16, 18, and 30) models. The present calculations show that the 3-6-2 cell, 
which probably best describes the FeCrAlY foam cells, has 27 edges and 18 vertices. A compilation of  
90 years of experimental data reveals that the average number of cell faces decreases linearly with the 
increasing ratio of quadrilateral to pentagonal faces. It is concluded that the Kelvin model is not supported 
by these experimental data. 
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